CE Board Exam Randomizer

⬅ Back to Subject Topics

Beam Columns

NSCP 2015 (ASD & LRFD) – Section 508: Design of Members for Combined Forces and Torsion

This section covers members subjected to axial force and flexure about one or both axes (with/without torsion) and torsion-only members. For doubly or singly symmetric members:

$$ 0.1 \le \frac{I_{yc}}{I_y} \le 0.9 $$

Interaction concept

Design uses a load–resistance ratio that must not exceed unity:

$$ \frac{\text{required strength}}{\text{available strength}} \le 1.0 $$

When axial compression and bending act together about the $x$ and/or $y$ axes, the corresponding ratios are summed and limited to $1.0$.

508.1.1 Doubly and Singly Symmetric Members in Flexure and Compression

Use the appropriate interaction expression based on $P_r/P_c$:

For $P_r/P_c \ge 0.2$
$$ \frac{P_r}{P_c} + \frac{8}{9}\!\left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0 \quad (508.1\!-\!1a) $$
For $P_r/P_c < 0.2$
$$ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0 \quad (508.1\!-\!1b) $$

Symbols & mapping

Interaction Formulas (NSCP 2015)

For LRFD:

For: $\dfrac{P_u}{\phi_c P_n} \ge 0.20$ $$ \frac{P_u}{\phi_c P_n} + \frac{8}{9}\!\left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0 $$
For: $\dfrac{P_u}{\phi_c P_n} < 0.20$ $$ \frac{P_u}{2\phi_c P_n} + \!\left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0 $$

For ASD:

For: $\dfrac{P_a}{P_n / \Omega_c} \ge 0.20$ $$ \frac{P_u}{P_n / \Omega_c} + \frac{8}{9}\!\left(\frac{M_{ax}}{M_{nx}/\Omega_b} + \frac{M_{ay}}{M_{ny}/\Omega_b}\right) \le 1.0 $$
For: $\dfrac{P_a}{P_n / \Omega_c} < 0.20$ $$ \frac{P_u}{2(P_n / \Omega_c)} + \!\left(\frac{M_{ax}}{M_{nx}/\Omega_b} + \frac{M_{ay}}{M_{ny}/\Omega_b}\right) \le 1.0 $$

Second-order effects / Moment amplification

$$ M_r = B_1 M_{nt} + B_2 M_{lt} $$

Braced frames:

$$ B_1 = \frac{C_m}{1 - \alpha\,\dfrac{P_r}{P_{e1}}} \;\;\ge 1.0, \qquad P_{e1}=\frac{\pi^2 E I}{(K_1 L_1)^2} $$
$$ P_r = P_{nt} + B_2 P_{\ell t} $$

Where:

As an approximation:

$$ P_r = P_{nt} + P_{\ell t} $$

Unbraced frames:

$$ B_2 = \frac{1}{1 - \dfrac{P_{\text{story}}}{P_{e\,\text{story}}}} $$

Column curvature coefficient, $C_m$

Concept Concept Concept Concept Concept Concept Concept Concept
Scroll to zoom