Beam Columns
NSCP 2015 (ASD & LRFD) – Section 508: Design of Members for Combined Forces and Torsion
This section covers members subjected to axial force and flexure about one or both axes (with/without torsion) and torsion-only members.
For doubly or singly symmetric members:
$$ 0.1 \le \frac{I_{yc}}{I_y} \le 0.9 $$
Interaction concept
Design uses a load–resistance ratio that must not exceed unity:
$$ \frac{\text{required strength}}{\text{available strength}} \le 1.0 $$
When axial compression and bending act together about the $x$ and/or $y$ axes, the
corresponding ratios are summed and limited to $1.0$.
508.1.1 Doubly and Singly Symmetric Members in Flexure and Compression
Use the appropriate interaction expression based on $P_r/P_c$:
For $P_r/P_c \ge 0.2$
$$ \frac{P_r}{P_c} + \frac{8}{9}\!\left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0 \quad (508.1\!-\!1a) $$
For $P_r/P_c < 0.2$
$$ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0 \quad (508.1\!-\!1b) $$
Symbols & mapping
- $P_r$ = required axial compressive strength (actual load); $P_c$ = available axial compressive strength.
- $M_{rx}, M_{ry}$ = required moments about $x$ and $y$; $M_{cx}, M_{cy}$ = available moment capacities about $x$ and $y$.
- LRFD available bending uses $\phi_b M_n$; ASD uses $M_n/\Omega_b$ (substitute accordingly when checking the ratios).
- $x$ = strong-axis bending; $y$ = weak-axis bending.
Interaction Formulas (NSCP 2015)
For LRFD:
For: $\dfrac{P_u}{\phi_c P_n} \ge 0.20$
$$ \frac{P_u}{\phi_c P_n} + \frac{8}{9}\!\left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0 $$
For: $\dfrac{P_u}{\phi_c P_n} < 0.20$
$$ \frac{P_u}{2\phi_c P_n} + \!\left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0 $$
For ASD:
For: $\dfrac{P_a}{P_n / \Omega_c} \ge 0.20$
$$ \frac{P_u}{P_n / \Omega_c} + \frac{8}{9}\!\left(\frac{M_{ax}}{M_{nx}/\Omega_b} + \frac{M_{ay}}{M_{ny}/\Omega_b}\right) \le 1.0 $$
For: $\dfrac{P_a}{P_n / \Omega_c} < 0.20$
$$ \frac{P_u}{2(P_n / \Omega_c)} + \!\left(\frac{M_{ax}}{M_{nx}/\Omega_b} + \frac{M_{ay}}{M_{ny}/\Omega_b}\right) \le 1.0 $$
Second-order effects / Moment amplification
$$ M_r = B_1 M_{nt} + B_2 M_{lt} $$
- $M_{nt}$ = maximum first-order moment assuming no sidesway (braced behavior).
- $M_{lt}$ = maximum first-order moment when sidesway occurs (unbraced behavior).
- $B_1$ = Amplification factor for moments in members with no sidesway
- $B_2$ = Amplification factor for moments in members resulting from sidesway
Braced frames:
$$ B_1 = \frac{C_m}{1 - \alpha\,\dfrac{P_r}{P_{e1}}} \;\;\ge 1.0,
\qquad P_{e1}=\frac{\pi^2 E I}{(K_1 L_1)^2} $$
$$ P_r = P_{nt} + B_2 P_{\ell t} $$
Where:
- $P_{nt}$ = axial load corresponding to the braced condition
- $P_{tt}$ = axial load corresponding to the sidesway condition
As an approximation:
$$ P_r = P_{nt} + P_{\ell t} $$
Unbraced frames:
$$ B_2 = \frac{1}{1 - \dfrac{P_{\text{story}}}{P_{e\,\text{story}}}} $$
Column curvature coefficient, $C_m$